1. RÉSZ: AZ SPSS ALAPJAI ... 14
 1.1. Progrendszerelemek .. 14
 1.1.1. Interakciós eszközök .. 14
 1.1.2. Adatmátrix .. 18
 1.1.3. Az SPSS-ben használt ablakok .. 19
 1.2. Adat-editor menü sor parancsainak rövid leírása 24
 1.2.1. File menü .. 24
 1.2.2. Edit menü... 26
 1.2.2.1. Az Edit menü szokásos szerkesztési parancsai 26
 1.2.2.2. Az Edit menü Options... menüpontja 27
 1.2.2.3. A többi ablak Edit menüjének fontosabb parancsai 28
 1.2.3. View menü .. 29
 1.2.4. Data menü .. 29
 1.2.5. Transform menü .. 31
 1.2.5.1. A Compute... menüpont .. 32
 1.2.5.1.1. Aritmetikai függvények ... 32
 1.2.5.1.2. Konverziós függvények ... 32
 1.2.5.1.3. Valószínűségi eloszlásfüggvények 33
 1.2.5.1.4. Inverz valószínűségi eloszlásfüggvények 34
 1.2.5.1.5. Logikai függvények .. 34
 1.2.5.1.6. A hiányzó értékeket kezelő függvények 34
 1.2.5.1.7. Véletlenszám-generáló függvények 35
 1.2.5.1.8. Statisztikai függvények ... 36
 1.2.5.1.9. Szöveg-manipuláló (string) függvények 36
 1.2.5.1.10. Dátum- és időfüggvények 37
 1.2.5.1.11. Egyéb függvények (Miscellaneous) 39
 1.2.5.2. A Transform menü egyéb menüpontja 39
 1.2.6. Analyze menü .. 41
 1.2.6.1. Reports ... 41
 1.2.6.2. Descriptive Statistics .. 41
 1.2.6.3. Tables .. 42
 1.2.6.4. Compare Means ... 42
 1.2.6.5. General Linear Model .. 43
 1.2.6.6. Generalized Linear Models 44
 1.2.6.7. Mixed Models .. 45
 1.2.6.8. Correlate ... 45
 1.2.6.9. Regressions .. 45
 1.2.6.10. Loglinear ... 47
 1.2.6.11. Neural Networks .. 47
 1.2.6.12. Classify ... 47
 1.2.6.13. Dimension Reduction ... 48
 1.2.6.14. Scale ... 49
 1.2.6.15. Nonparametric Tests .. 50
 1.2.6.16. Forecasting ... 51
 1.2.6.17. Az Analyze menü további részei 52
 1.2.7. Direct Marketing menü .. 54
 1.2.8. Graphs menü ... 55
 1.2.8.1. Chart Builder .. 55
 1.2.8.2. Graphboard Template Chooser 55
 1.2.8.3. Legacy Dialogs ... 55
 1.2.8.3.1. Bar ... 55
 1.2.8.3.2. 3-D Bar.. 60
 1.2.8.3.3. Line .. 62
 1.2.8.3.4. Area .. 63
 1.2.8.3.5. Pie ... 63
 1.2.8.3.6. High-Low .. 64
 1.2.8.3.7. Boxplot ... 67
 1.2.8.3.8. Error Bar ... 69
 1.2.8.3.9. Population Pyramid ... 69
1.4. A Síntax ablak kezelése
1.4.1. A szintaktika üzembeállításának beolvasása
1.4.2. A szintaktika üzembeállításának bemutatása
1.4.3. A szintaktika üzembeállításának használata
1.4.4. A szintaktika üzembeállításának beolvasása
1.4.5. A szintaktika üzembeállításának bemutatása
1.4.6. A szintaktika üzembeállításának használata
1.4.7. A szintaktika üzembeállításának beolvasása
1.4.8. A szintaktika üzembeállításának bemutatása
1.4.9. A szintaktika üzembeállításának használata
1.4.10. A szintaktika üzembeállításának beolvasása
1.4.11. A szintaktika üzembeállításának bemutatása
1.4.12. A szintaktika üzembeállításának használata

2. RÉSZ: MATEMATIKAI STATISZTIKAI ÁLPANK
2.1. Példák statisztikai problemáknak
2.2. Leíró statisztikák, grafikonok, táblázatok
2.2.1. A lényeg rövid összefoglalása
2.2.2. A matematikai részletek
2.2.2.1. Az adatok centrálnyi helyzét leíró statisztikák
2.2.2.2. A szórás mértékei
2.2.2.3. További eloszlásmentes
2.2.2.4. Az átlagok összefüggeszének mérésének
2.2.2.4.1. A korreláció táblázat és a belső számított statisztikák
2.2.2.4.2. Ordinális mértékek a függőség mérésére
2.2.2.4.3. Számváltozók közötti lineáris kapcsolat erősségét mérő statisztikák
2.2.3. SPSS statisztikák
2.2.3.1. Adatok bevitel, elmentése
2.2.3.2. Grafikus kiértékelés
2.2.3.3. Alapstatisztikák kérésére
2.2.3.4. Összefüggés táblázatok készítése
2.2.3.4.1. Az Analyze/Table/Custom Tables párbeszédablak kezelése
2.2.3.4.2. A Categories and Tables ablak
2.2.3.4.3. A Summary Statistics ablak
2.2.3.4.4. Szignifikanciaszámok a táblázatokban
2.2.3.4.5. További ablakok, lehetőségek

2.3. Hipotéziselmélet
2.3.1. A lényeg rövid összefoglalása
2.3.2. A matematikai részletek
2.3.2.1. A hipotéziselmélet alapjai
2.3.2.2. Paraméteres próbák
2.3.2.2.1. Egymintás u-próba
2.3.2.2.2. A kétféle v-próba
2.3.2.2.3. Az egymintás f-próba
2.3.2.2.4. A két párosított (összetartozó) mintás t-próba .. 140
2.3.2.2.5. A két független mintás t-próba ... 140
2.3.2.2.6. Az F-próba ... 141
2.3.2.2.7. Bartlett-próba ... 142
2.3.2.2.8. A Welch-próba (d-próba) ... 143
2.3.2.3. Nemparaméteres próbák .. 143
2.3.2.3.1. \(\chi^2 \)-próbák ... 143
2.3.2.3.2. "Az egymintás Kolmogorov-Smirnov-próba illeszkedésvizsgálatra" 147
2.3.2.4. A homogenitás problémájának matematikai megfogalmazása 148
2.3.2.4.1. Két független minta homogenitásának ellenőrzése ... 148
2.3.2.4.2. Több független minta homogenitásának vizsgálata ... 149
2.3.2.4.3. Két párosított minta homogenitásának vizsgálata ... 149
2.3.2.4.4. Több összetartozó minta homogenitásának vizsgálata 149
2.3.2.4.5. Kloszteranalízis alkalmazása a minták homogenitásának ellenőrzésére 150
2.3.2.4.6. Nemparaméteres próbák a minták homogenitásának ellenőrzésére 150
2.3.3. SPSS gyakorlatok ... 155
2.3.3.1. Normalitásvizsgálat ... 155
2.3.3.2. Két független minta összehasonlítása Mann-Whitney próbával 156
2.3.3.3. Két összetartozó minta összehasonlítása Wilcoxon próbával 157
2.3.3.4. Két független minta összehasonlítása t-próbával ... 157
2.3.3.5. Két összetartozó minta összehasonlítása t-próbával ... 158
2.3.3.6. Két független minta homogenitás-vizsgálata Kolmogorov-Smirnov Z-próbával 158
2.3.3.7. Három független minta összehasonlítása Kruskal-Wallis próbával 159

2.4. Szórásanalízis .. 160
2.4.1. A lényeg rövid összefoglalása ... 160
2.4.2. A matematikai részletek .. 161
2.4.2.1. A szórásanalízis alapfogalmai ... 161
2.4.2.2. Kísérleti elrendezések ... 162
2.4.2.3. A szórásanalízis módszerei ... 164
2.4.2.4. Egyszeres osztályozás ... 164
2.4.2.5. Kétszeres osztályozás az interakció függetlensége nélkül 166
2.4.2.6. Kétszeres osztályozás az interakció függetlensével .. 167
2.4.2.7. Nemparaméteres alternatívák .. 168
2.4.2.7.1. Független minták összehasonlítása ... 168
2.4.2.7.2. Összetartozó minták összehasonlítása ... 169
2.4.3. SPSS gyakorlatok ... 169
2.4.3.1. Egyzsempontos (egyfaktoros) szórásanalízis ... 169
2.4.3.2. Kétszempontos (kétfaktoros) szórásanalízis ... 171

2.5. Regresszió-analízis ... 174
2.5.1. A lényeg rövid összefoglalása ... 174
2.5.2. A matematikai részletek .. 175
2.5.2.1. Az alapprobléma ... 175
2.5.2.2. Definíciók, jelölések ... 176
2.5.2.3. Példák regressziós problémára .. 178
2.5.2.4. Lineáris regresszió két változó között .. 180
2.5.2.4.1. Az alapproblémát, az elméleti együtthatókat, a megfelelő lineáris regresszió két változó közötti kissé komplexitásának megértésére 180
2.5.2.4.2. Próbák és konfidencia-intervallumok a lineáris regresszió két változó közötti megértésére 180
2.5.2.4.3. Lineáris regresszió díchoformi vagy kategorizált változóval, az elméleti együtthatókat, a megfelelő lineáris regresszió díchoformi változóval 185
2.5.2.4.4. Lineáris regresszió díchoformi változóval, az elméleti együtthatókat, a megfelelő lineáris regresszió díchoformi változóval 185
2.5.2.4.5. Logisztikus regresszió ... 189
2.5.2.4.6. Polinomiális regresszió .. 192
2.5.2.4.7. Lineáris regresszió beépített tényezők: ideális kétparaméteres regressziós összefüggések közötti két változó közötti megértésére 192
2.5.2.5. Nemlineáris regresszió .. 196
2.5.2.6. Többváltozós lineáris regresszió .. 196
2.5.2.6.1. Az alapproblémát, az elméleti együtthatókat, a megfelelő lineáris regresszió többváltozós változóival 196
2.5.2.6.2. Szórásanalízis a modell érvényességének előidézésére, a lineáris regresszió többváltozós változóival 197
2.5.2.6.3. A független változók minősítése a lineáris kapcsolat szempontjából, a lineáris regresszió többváltozós változóival 198
2.5.2.6.4. Modelleptés, a parciális F-próba, a lineáris regresszió többváltozós változóival 198
2.5.2.6.5. Automatikus eljárások a lineáris regresszió-modell összefoglalására 199
2.6. Az általános és az általánosított lineáris modell...218
 2.6.1. A lényeg rövid összefoglalása ..218
 2.6.2. A matematikai részletek ..219
 2.6.2.1. Elvi alapok ..219
 2.6.2.2. Az egyváltozós GLM modellek ...219
 2.6.2.2.1. Többváltozós lineáris regresszió ...221
 2.6.2.2.2. Egyszeres osztályozás (One-Way ANOVA) ..221
 2.6.2.2.3. Kétszeres osztályozás interakció nékül ...222
 2.6.2.2.4. Többváltozós GLM modellek ...223
 2.6.2.4. A megismételt mérések esete (repeated measures) ..223
 2.6.2.5. Az általánosított lineáris lineáris modellek (GZLM) ..223
 2.6.3. SPSS gyakorlatok ..225
 2.6.3.1. Egyszeres osztályozás elvégzése a GLM-mel ...225
 2.6.3.2. Kétszeres osztályozás elvégzése a GLM-mel ...226
 2.6.3.3. Ismételt mérések (gyermekek növekedésének vizsgálata)228
 2.6.3.4. Ismételt mérések (tanulók egyenlet megoldási teljesítményének vizsgálata)231
 2.6.3.5. Munkaügyi intézkedés fogadatosságának vizsgálata loglineáris analízissel és bináris
 logisztikus regresszióval ..235
 2.7. A faktoranalizis és a főkomponens-analízis ...237
 2.7.1. A lényeg rövid összefoglalása ..237
 2.7.2. A matematikai részletek ..238
 2.7.2.1. A faktoranalizis ...238
 2.7.2.2. A főfaktor analízis ...240
 2.7.2.2.1. Nemúszózott és súlyozott legkisebb négyzetek módszere240
 2.7.2.2.2. Maximum-likelihood faktoranalízis ..241
 2.7.2.2.3. Egyéb módszerek ...241
 2.7.2.3. A főkomponens-analízis ..242
 2.7.3. SPSS gyakorlatok ...243
 2.7.3.1. Gépkocsi-jellemzők vizsgálata faktoranalízissel (Az eredmények felépítése) ...243
 2.7.3.2. Gépkocsi jellemzők vizsgálata faktoranalízissel (Az eredmények értelmezése) ...247
 2.8. Osztályozási módszerterek ...251
 2.8.1. A lényeg rövid összefoglalása ..251
 2.8.2. A matematikai részletek ..252
 2.8.2.1. Osztályozási módszerek ..252
 2.8.2.2. Az alakelismeres matematikai modellje ..253
 2.8.2.3. Tanulóalgimotusok ...253
 2.8.2.3.1. Osztályozás másodrendű felületkek ...254
 2.8.2.3.2. A legközelebbi társ módszer ...255
 2.8.2.4. Diszkriminancia-analízis ..258
 2.8.2.5. ROC görbék alapuló diszkrimináció ...260
 2.8.2.6. Klaszteranalízis ...261
 2.8.2.6.1. A középpont módszer (K-means clusters) ..262
 2.8.2.6.2. Hierarchikus klaszterezési módszer ...263
 2.8.2.6.3. Kétféle klaszterezés (TwoStep Cluster Analysis) ...264
 2.8.3. Számtárgyak gyakorlatok ...266
 2.8.3.1. Diszkriminancia analízis hat kategoriával és nagy számú prediktor változóval
 (Országok diszkriminálása gazdasági régiók alapján) ..266
 2.8.3.2. Rögtönztet számú klaszter előállítása (Országok klaszterezése gazdasági régiók
 alapján) ..270
 2.8.3.3. ROC-görbék. (Radar-operátorok diszkriminációs teljesítményének vizsgálata) ...271
 2.8.3.4. Diszkriminancia analízis négy kategoriával és négy prediktor változóval
 (Munkavállalók változó beaválasának előrejelzése pszichológiai adatok alapján) 273
2.8.3.5. Példa kétlépéses klaszterezés..276
2.8.3.6. A legközelebbi társ módszer alkalmazása.................................278
2.9. Skálázás..280
 2.9.1. A lényeg rövid összefoglalása...280
 2.9.1.1. Skálák megbízhatósága...280
 2.9.1.2. A többdimenziós skálázás...280
 2.9.1.3. A conjoint analízis..281
 2.9.2. A matematikai részletek...282
 2.9.2.1. Skálák megbízhatósága...282
 2.9.2.1.1. A klasszikus tesztmételt alapjú..282
 2.9.2.1.2. Skálák megbízhatósági és érvényességi modellek........................283
 2.9.2.1.3. Több biráló skálázott ítéleteire épülő mérési eljárások megbízhatósága...287
 2.9.2.2. A többdimenziós skálázás...289
 2.9.2.2.1. A többdimenziós skálázás alapproblémái..................................289
 2.9.2.2.2. A klasszikus MDS...292
 2.9.2.2.3. Nemmetrikus módszerek, a Sheppard-Kruskal-algoritmus...........293
 2.9.2.2.4. Több kísérleti személy érdekményeinek együtt kiértékelése..........294
 2.9.2.2.5. Az SPSS-ben használt néhány definíció......................................294
 2.9.2.3. A conjoint analízis...295
 2.9.2.3.1. A conjoint analízis alapelvei..295
 2.9.2.3.2. A conjoint analízis modelljei..295
 2.9.2.3.3. A conjoint analízis néhány általános vonása az SPSS-ben..............297
 2.9.3. SPSS gyakorlatok..298
 2.9.3.1. Skálák megbízhatóságának elemzése I. (Egyszerű egy- és háromskálás tesztek skáláinak megbízhatósági elemzése)..298
 2.9.3.2. Skálák megbízhatóságának elemzése II. (Az MBI első magyar nyelvű szemémpapírépá verzióról a megbízhatósági elemzése)...300
 2.9.3.3. Elemzés az osztályon belüli korrelációs együttható ICC segítségével (Tornászok produkcióját értékelő NOB pontozózsi szület feljelzémenyének megbízhatóság- vizsgálata)..303
 2.9.3.4. Egy távolságmatricán alapuló kétdimenziós paraméteres és nemparaméteres MDS (Térkép konstruálása városok egymástól való távolsága alapján).................................304
 2.9.3.5. Preferencia-pontszámokon alapuló háromdimenziós WMDS (Vállalati döntéshozók gondolkodásmódjának elemzése)..309
 2.9.3.6. Több távolságmétrixen alapuló kétdimenziós paraméteres MDS és WMDS [Politikusok országokkal kapcsolatos nézeteinek elemzése]..313
 2.9.3.7. Szubjektív pontszámokon alapuló kétdimenziós MDS (Matematikai feladatok érthetőségét meghatározó tényezők vizsgálata)..318
 2.9.3.8. Conjoint analízis...320
 2.9.3.8.1. Uj edzócso legkedvezőbb várható fogyasztói fogadhatóságát kiváltó kombinációjának meghatározása..320
 2.9.3.8.2. Szöveg alapú készület legkedvezőbb várható fogyasztói fogadhatóságát kiváltó jellemző-kombinációjának meghatározása..324
 2.9.3.8.3. Szórakoztató elektronikai termék legkedvezőbb várható fogyasztói fogadhatóságát kiváltó jellemző-kombinációjának meghatározása................................327
 2.10. Idősorok elemzése...328
 2.10.1. A lényeg rövid összefoglalása...328
 2.10.2. A matematikai részletek...329
 2.10.2.1. Bevezetés, alapfogalmak...329
 2.10.2.2. „Nem változó” idősorok detektálására vonatkozó próbák................331
 2.10.2.3. Az exponenciális szűrés..332
 2.10.2.4. Box-Jenkins-féle idősor modelljei (ARIMA).....................................337
 2.10.2.5. Lassú ciklusok feltárása, a periodogram...341
 2.10.2.6. Trendlemzés...342
 2.10.3. SPSS gyakorlatok..343
 2.10.3.1. Exponenciális szűrés (Nyomtatók napi energia-felvételét tartalmazó idősor elemzése)...343
 2.10.3.2. Előrejelzés hagyományos regressziós módszerekkel és indikátort-váltó segítségével (Részvények jegyzéseinek alakulását jellemző idősor elemzése)........346
 2.10.3.3. Előrejelzés hagyományos regressziós módszerekkel és exponenciális simításával [Magyarország népességi adatainak alakulása]..350
 2.10.3.4. Előrejelzés egy ARIMA(1,0,0) model csoportján (Magyarország 1975-1994 közötti villamosenergia termelését jellemző idősor elemzése).....................355
2.10.3.5. Trendet és szezonálisát tartalmazó idő sor felbontása additív komponensekre
(Vasúti áruszállítás alakulását mutató idősor elemzése)………………………………………358
2.10.3.6. Szezonálisítást és hosszú távú ciklus tartalmazó idősor felbontása multiplikatív
komponensekre (A DEM/USD árfolyam idősorának elemzése)………………………………………361
2.10.3.7. Kereskedő cég forgalmának előrejelzése szezonális dekompozícióval és ARIMA
modellek……364
2.11. Szabályozó grafikonok……………………………………………………………………………………………………369
2.11.1. A lényeg rövid összefoglalása…………………………………………………………………………………………369
2.11.2. A matematikai részletek………………………………………………………………………………………………370
2.11.2.1. Elméleti alapok……………………………………………………………………………………………………370
2.11.2.2. Méréses szabályozás………………………………………………………………………………………………371
2.11.2.2.1. Alapfogalmak……………………………………………………………………………………………………371
2.11.2.2.2. Méréses jellemzők szabályozó és kiegészítő grafikonjainak alaptípusai…………………374
2.11.2.2.3. Példák a méréses jellemzők SPSS Statistics 19 által előállítható szabályozó és
kiegészítő grafikonjaira……………………………………………………………………………………………………376
2.11.2.3. Minősítéses szabályozás…………………………………………………………………………………………………..379
2.11.2.3.1. Alapfogalmak……………………………………………………………………………………………………379
2.11.2.3.2. Méréses jellemzők szabályozó grafikonjainak alaptípusai………………………………………381
2.11.2.3.3. Példák a minősítéses jellemzők SPSS Statistics 19 által előállítható
szabályozó és kiegészítő grafikonjaira……………………………………………………………………………………………………381
2.11.2.4. Összefoglaló áttekintés……………………………………………………………………………………………………..383
2.12. Mesterséges neurális hálózatok (ANN)……………………………………………………………………………………………………394
2.12.1. A lényeg rövid összefoglalása…………………………………………………………………………………………394
2.12.2. A matematikai részletek……………………………………………………………………………………………………395
2.12.2.1. A biológiai és a mesterséges neurális hálózatok………………………………………………………………………………395
2.12.2.2. A neurális hálózatok matematikai modellje és működése……………………………………………………………399
2.12.2.2.1. Az ANN modellek telepítése és ellenőrzése………………………………………………………………………………399
2.12.2.2.2. Többrétegű perceptron alapuló hálózat (Multi-Layer Perceptron)………………….401
2.12.2.2.3. Radialis bázisfüggvényen alapuló hálózat (Radial Basis Function)…………………..404
2.12.3.SPSS gyakorlatok……405
2.12.3.1. Egy egyszerű bevezető példa: kutyák és macskák megkülönböztetése három
jellemzőnket alapján……405
2.12.3.2. A párhuzamos megosztott feldolgozás tulajdonságainak szemléltetése;
személyek jellemző közötti kapcsolatok „megtanulása”………………………………………………………………………………407
2.12.3.3. Banki hitelkészesség előrejelzése ügyféladatok alapján………………………………………………………………………………410
2.12.3.4. Várható kórházi kezelési költségek és ápolási napok előrejelzése………………………………………………………………………………418
2.12.3.5. Egy direkt marketing klasszifikációs probléma megoldása…………………..420
2.12.3.6. Aláírások valódiságának ellenőrzése az aláírásokat jellemző idősorok
vizsgálatával……422
3. RÉSZ: GYAKORLATI ÚTMUTATÓK ÉS FELADATOK………………………………………………………………………………………………………429
3.1. Gyakorlati útmutatók a statisztikai elemzésekkel kapcsolatban…………………429
3.1.1. A gyakorlatban használt statisztikai eljárások alapjai………………………………………………………………………………429
3.1.2. A minimálisan szükséges mintaelemzési meghatározása…………………………………..432
3.1.3. Sengő és minősítéses statisztikai eljárások gyakorlatai az SPSS-ben…………………..435
3.2. Gyakorlati feladatok……443
3.2.1. A feladatokban használt állományok rövid leírása………………………………………………………………………………443
3.2.1.1. Az állományok felsorolása………………………………………………………………………………………………443
3.2.1.2. Az állományok rövid leírása………………………………………………………………………………………………444
3.2.2. Feladatok lépésről lépésre vezetett megoldásokkal………………………………………………………..452
3.2.2.1. Adatmanipulálás: adatok aggregálása és konvertálása………………………………………………………………………………452
3.2.2.2. A Transform menü funkcióinak gyakorlása………………………………………………………………………………454
3.2.2.3. Normálításvizsgálat……455
3.2.2.4. Nemlineáris regressziós összefüggés keresése
3.2.2.5. Osztállyozás, klaszeranalízis
3.2.2.6. Faktoranályzis, főkomponensanalízis
3.2.2.7. Emberi erőforrásokat jellemző adatok elemzése
3.2.2.8. Megbízhatósági tűgvény és meghibásodási ráta
3.2.2.9. Tulélső adatok analízisa
3.2.2.10. Vélemények egyezésének vizsgálata
3.2.2.11. Korrespondencia analízis
3.2.2.12. Ember-számítógép interakciót jellemző adatok elemzése: két e-mail rendszer
3.2.2.13. Homer-számítógép interakciót jellemző adatok elemzése: kapcsolódó gyakoriság
3.2.2.14. Internetes honlap látogatóinak viselkedését jellemző adatok elemzése
3.2.2.15. Internet-használati szokások elemzése
3.2.2.16. A Q-módszertan alkalmazásai
3.2.2.16.1. Politikai pszichológiai esettanulmány
3.2.2.16.2. A termékmintyefesztő adatok elemzése
3.2.2.17. A logatetősosség megítélésével kapcsolatos elemzés: Látássértőt és ép CC
3.2.2.17.1. Orvosi rehabilitációs adatdíszelémek
3.2.2.17.2. A termékelhívő technológiáknak megítélésével kapcsolatos elemzés
3.2.2.17.3. Három különböző tipusú hallókészülék használhatóságának összehasonlíthatóságának vizsgálata
3.2.2.17.4. Egy speciális alternatív számítógépes adatbeviteli eszköz különböző verziói használhatóságának vizsgálata
3.2.2.18.1. Gerinc- és törzsomzat-rehabilitáció előrehaladásának követése
3.2.2.18.2. Egymintás és összetartozó kétmintás adatok elemzése
3.2.2.19. Támogató technológiák fejlesztésével, tesztelésével és használataival kapcsolatos adatadatok elemzése
3.2.2.19.1. Három különböző tipusú hallókészülék használhatóságának összehasonlító vizsgálata
3.2.2.19.2. Egy speciális alternatív számítógépes adatbeviteli eszköz különböző verziói használhatóságának vizsgálata
3.2.2.19.3. Tréfázáskor megfigyelés és használata segítő egyszerű segédeszköz
3.2.2.20. Fogóalkotatás reabilitációs adatadatok elemzése
3.2.2.20.1. A munkába való visszatérés előrelése logisztikus regresszióval alkalmas
3.2.2.20.2. A munkába való visszatérés előrelése neurális hálózattal alkalmas
3.2.2.20.3. Konkrét munkatévkenységben való bevétele előrelése alkalmas
3.2.3. Feladatok rövid leírása
3.2.3.1. Számtárolás változó létrehozása
3.2.3.2. Adott eloszlály véletlenszámok generálása
3.2.3.3. Kockadobás-sorozat simulálása
3.2.3.4. Hiszogram-készítés
3.2.3.5. Empirikus eloszlásfüggvény (gyakoriság eloszlás) kirajzolása
3.2.3.6. A χ² eloszlás kvantilistája
3.2.3.7. Alapstatisztikák kiszámítása
3.2.3.8. Boxplot-grafikon elkészítése
3.2.3.9. Pontdiagram készítése
3.2.3.10. Egymintás és összetartozó kétmintás t-próba
3.2.3.11. Független kétmintás t-próba
3.2.3.12. Egyszeméntelosztás varianciaanalízis [One-Way ANOVA]
3.2.3.13. Homogenitásvizsgálat
3.2.3.14. Grafikus regresszióelemzés
3.2.3.15. Egyszerű lineáris regresszióelemzés
3.2.3.16. Többváltozós lineáris regresszióelemzés
3.2.3.17. Lineáris regresszió dichotóm függő változóval
3.2.3.18. Szakszonzkénti lineáris regresszióelemzés
3.2.3.19. Nemlineáris regresszióelemzés
3.2.3.20. Nemlineáris regresszióelemzés
3.2.3.21. Főkomponensanalízis
3.2.3.22. Faktoranalízis
3.2.3.23. Klaszeranalízis
3.2.3.24. Diszkriminanciaanalízis ...543
3.2.3.25. Többdimenziós skálázás ...543
3.2.3.26. Lineáris trendfüggvény keresése ..544
3.2.3.27. Nemlineáris trendfüggvény keresése544
3.2.3.28. Exponenciális trendfüggvény keresése545
3.2.3.29. A szezonális komponens figyelembevétele546
3.2.3.30. Dekompozíciós modell mozgó átlagolással546
3.2.3.31. Dekompozíció nemlineáris trenddel és szezonális hatással547
3.2.4. Önállóan megoldandó feladatok ..548
3.2.5. Az SPSS-sel együtt adott adatmátrixok leírása551

Irodalom 577